Structure relations for the bivariate big q-Jacobi polynomials
نویسندگان
چکیده
The bivariate big q-Jacobi polynomials are defined by [3] Pn,k(x, y; a, b, c, d; q) := Pn−k(y; a, bcq , dq; q) y(dq/y; q)k Pk (x/y; c, b, d/y; q) (n ≥ 0; k = 0, 1, . . . , n), where q ∈ (0, 1), 0 < aq, bq, cq < 1, d < 0, and Pm(t;α, β, γ; q) are univariate big q-Jacobi polynomials, Pm(t;α, β, γ; q) := 3φ2 ( q−m, αβq, t αq, γq ∣∣∣∣ q; q) (m ≥ 0) (see, e.g., [1, Section 7.3]). We give structure relations in the form σ 1 Dq±1,xPn = F ± n,1Pn+1 +G ± n,1Pn +H ± n,1Pn−1, σ 2 Dq±1,yPn = F ± n,2Pn+1 +G ± n,2Pn +H ± n,2Pn−1, where Pn := [Pn,0, Pn,1, . . . , Pn,n] , Pn,k = Pn,k(x, y; a, b, c, d; q), Dq±1,zPn := [Dq±1,zPn,0, Dq±1,zPn,1, . . . , Dq±1,zPn,n] T (z = x, y), Dq±1,x and Dq±1,y are partial q-derivative operators, σ ± i are certain polynomials of total degree 2, and F ± n,i, G ± n,i and H± n,i (i = 1, 2) are tridiagonal matrices of appropriate dimensions. We discuss in full detail the case of the polynomials Pn,k(x, y; a, b, c, 0; q), which are closely related to Dunkl’s bivariate (little) q-Jacobi polynomials [2]. AMS Classification: 33D50, 33C50
منابع مشابه
On Some Limit Cases of Askey-wilson Polynomials
We show that limit transitions from Askey-Wilson polynomials to q-Racah, little and big q-Jacobi polynomials can be made rigorous on the level of their orthogonality measures in a suitable weak sense. This allows us to derive the orthogonality relations and norm evaluations for the q-Racah polynomials, little and big q-Jacobi polynomials by taking limits in the orthogonality relations and norm ...
متن کاملTwo-variable orthogonal polynomials of big q-Jacobi type
A four-parameter family of orthogonal polynomials in two variables is defined by Pn,k(x, y; a, b, c, d; q) :=Pn−k(y; a, bcq , dq; q) y(dq/y; q)k Pk (x/y; c, b, d/y; q) (n ∈ N; k = 0, 1, . . . , n), where q ∈ (0, 1), 0 < aq, bq, cq < 1, d < 0, and Pm(t;α, β, γ; q) are univariate big q-Jacobi polynomials, Pm(t;α, β, γ; q) := 3φ2 ( q−m, αβq, t αq, γq ∣∣∣∣ q; q) (m ≥ 0) (see, e.g., [1, Section 7.3]...
متن کاملNon-classical orthogonality relations for big and little q-Jacobi polynomials
Big q-Jacobi polynomials {Pn(·; a, b, c; q)}∞n=0 are classically defined for 0 < a < q −1, 0 < b < q−1 and c < 0. For the family of little q-Jacobi polynomials {pn(·; a, b|q)}∞n=0, classical considerations restrict the parameters imposing 0 < a < q−1 and b < q−1. In this work we extend both families in such a way that wider sets of parameters are allowed, and we establish orthogonality conditio...
متن کاملLimit relations between q-Krall type orthogonal polynomials
In this paper, we consider a natural extension of several results related to Krall-type polynomials introducing a modification of a q-classical linear functional via the addition of one or two mass points. The limit relations between the q-Krall type modification of big q-Jacobi, little q-Jacobi, big q-Laguerre, and other families of the q-Hahn tableau are established.
متن کاملThe structure relation for Askey-Wilson polynomials
An explicit structure relation for Askey-Wilson polynomials is given. This involves a divided q-difference operator which is skew symmetric with respect to the Askey-Wilson inner product and which sends polynomials of degree n to polynomials of degree n+ 1. By specialization of parameters and by taking limits, similar structure relations, as well as lowering and raising relations, can be obtain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 219 شماره
صفحات -
تاریخ انتشار 2013